Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501596

RESUMO

The mechanosensitive channel of large conductance (MscL) acts as an "emergency release valve" that protects bacterial cells from acute hypoosmotic stress, and it serves as a paradigm for studying the mechanism underlying the transduction of mechanical forces. MscL gating is proposed to initiate with an expansion without opening, followed by subsequent pore opening via a number of intermediate substates, and ends in a full opening. However, the details of gating process are still largely unknown. Using in vivo viability assay, single channel patch clamp recording, cysteine cross-linking, and tryptophan fluorescence quenching approach, we identified and characterized MscL mutants with different occupancies of constriction region in the pore domain. The results demonstrated the shifts of constriction point along the gating pathway towards cytoplasic side from residue G26, though G22, to L19 upon gating, indicating the closed-expanded transitions coupling of the expansion of tightly packed hydrophobic constriction region to conduct the initial ion permeation in response to the membrane tension. Furthermore, these transitions were regulated by the hydrophobic and lipidic interaction with the constricting "hot spots". Our data reveal a new resolution of the transitions from the closed to the opening substate of MscL, providing insights into the gating mechanisms of MscL.


Assuntos
Proteínas de Escherichia coli , Canais Iônicos , Canais Iônicos/genética , Canais Iônicos/química , Canais Iônicos/metabolismo , Ativação do Canal Iônico/fisiologia , Proteínas de Escherichia coli/química , Constrição
2.
BMC Surg ; 23(1): 380, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093252

RESUMO

BACKGROUND: To compared the clinical efficacy of two surgical methods, posterior laminectomy fusion fixation, and posterior single open-door laminoplasty, in treating multilevel cervical ossification of the posterior longitudinal ligament (OPLL). METHODS: The study retrospectively included 102 patients treated between December 2016 and December 2020. The patients were included into an observation group (56 cases) treated with total laminectomy and lateral screw fixation, and a control group (46 cases) treated with single open-door laminoplasty. RESULTS: After 24 months, both groups showed significant improvement in Japanese Orthopaedic Association (JOA) scores and Visual Analogue Scale (VAS) scores, indicating better clinical symptoms and functional recovery. There was no significant difference in preoperative JOA and VAS scores between the two groups (P > 0.05). At 24 months after surgery, there was no significant difference in JOA and VAS scores between the two groups (P > 0.05). However, the observation group had a significantly higher cervical curvature index (CCI) and lower range of motion (ROM) of the cervical spine compared to the control group (P < 0.05). The CCI in control group was lower than before surgery, while the CCI in observation group was higher than before surgery, and CCI in the control group was considerably lower than that in the observation group (P < 0.05). The complication rate was lower in the control group, with fewer cases of axial symptoms, fifth cervical nerve root palsy, and overall complications. The overall complication rate was 25.0% (14/56) in the observation group and 10.8% (5/46) in the control group (P < 0.05). CONCLUSIONS: Both posterior laminectomy fusion fixation and posterior single open-door laminoplasty yield positive outcomes in improving clinical neurological function, cervical curvature, range of motion of the cervical spine, and cervical sagittal balance. Although open-door laminoplasty is less effective than total laminectomy in maintaining CCI and sagittal balance, it excels in preserving cervical range of motion, less surgical trauma and complications. Thus, open-door laminoplasty may be a suitable first-choice treatment for multi-segmental cervical OPLL, especially for patients with lordotic cervical spine physiological curvature.


Assuntos
Laminoplastia , Ossificação do Ligamento Longitudinal Posterior , Humanos , Laminectomia/métodos , Ligamentos Longitudinais/cirurgia , Estudos Retrospectivos , Laminoplastia/métodos , Osteogênese , Resultado do Tratamento , Ossificação do Ligamento Longitudinal Posterior/cirurgia , Vértebras Cervicais/cirurgia
3.
FEBS Open Bio ; 13(9): 1699-1708, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37483149

RESUMO

Metallic implants have great application in clinical orthopedics. Implants wear out in vivo due to long-term mechanical loading. The formation of wear debris is one of the long-term complications of prosthesis. In the case of artificial joint replacement in particular, aseptic loosening is the most common reason for secondary revision surgery. Previous studies suggested that wear debris caused aseptic loosening mainly by promoting osteolysis around the prosthesis. In this study, titanium particles, the most commonly used particles in clinical practice, were selected to simulate wear debris and explore the influence of titanium particles on osteogenic differentiation of mesenchymal stem cells. Our results show that titanium particles can significantly inhibit osteogenic differentiation in a dose-dependent manner. While engaged in preliminary exploration of the underlying mechanisms, we found that titanium particles significantly affect phosphorylation of ERK1/2, a key component of MAPK signaling. This suggests that the MAPK signaling pathway is involved in the inhibition of osteogenic differentiation by titanium particles.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Titânio/farmacologia , Titânio/metabolismo , Sistema de Sinalização das MAP Quinases , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
4.
Transl Psychiatry ; 12(1): 141, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379771

RESUMO

The cell adhesion molecule nectin3 and its presynaptic partner nectin1 have been linked to early-life stress-related cognitive disorders, but how the nectin1-nectin3 system contributes to stress-induced neuronal, circuit, and cognitive abnormalities remains to be studied. Here we show that in neonatally stressed male mice, temporal order and spatial working memories, which require the medial entorhinal cortex (MEC)-CA1 pathway, as well as the structural integrity of CA1 pyramidal neurons were markedly impaired in adulthood. These cognitive and structural abnormalities in stressed mice were associated with decreased nectin levels in entorhinal and hippocampal subregions, especially reduced nectin1 level in the MEC and nectin3 level in the CA1. Postnatal suppression of nectin1 but not nectin3 level in the MEC impaired spatial memory, whereas conditional inactivation of nectin1 from MEC excitatory neurons reproduced the adverse effects of early-life stress on MEC-dependent memories and neuronal plasticity in CA1. Our data suggest that early-life stress disrupts presynaptic nectin1-mediated interneuronal adhesion in the MEC-CA1 pathway, which may in turn contribute to stress-induced synaptic and cognitive deficits.


Assuntos
Transtornos da Memória , Células Piramidais , Estresse Psicológico , Animais , Masculino , Camundongos , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Células Piramidais/metabolismo , Memória Espacial/fisiologia , Nectinas , Adesão Celular
5.
BMC Microbiol ; 19(1): 264, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31771504

RESUMO

BACKGROUND: Investigating the factors that influence Acinetobacter baumannii(Ab) adhesion/invasion of host cells is important to understand its pathogenicity. Metal cations have been shown to play an important role in regulating the biofilm formation and increasing the virulence of Ab; however, the effect of calcium on host-bacterial interaction has yet to be clarified. Here, the dynamic process of the interaction between Ab and human respiratory epithelial cells and the effect of calcium on host-bacterial interaction were explored using microscopic imaging, quantitative PCR and real time cellular analysis (RTCA). RESULTS: The concentration of calcium, multiplicity of infection and co-culture time were all demonstrated to have effects on host-bacterial interaction. A unique "double peak" phenomenon changed to a sharp "single peak" phenomenon during the process of Ab infection under the effect of calcium was observed in the time-dependent cell response profiles. Moreover, calcium can increase Ab adhesion/invasion of epithelial cells by regulating the expression of Ab-related genes (ompA, bfmRS, abaI). CONCLUSIONS: Effective control of calcium concentrations can provide new approaches for the prevention and treatment of multi-drug resistant Ab.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiologia , Aderência Bacteriana , Cálcio/química , Células Epiteliais/microbiologia , Infecções por Acinetobacter/microbiologia , Biofilmes , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Sistema Respiratório/citologia , Sistema Respiratório/microbiologia , Virulência
6.
Neuroscience ; 422: 99-118, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726033

RESUMO

Microglia activation plays a key role in regulating inflammatory and immune reaction during cerebral ischemia and it exerts pro-inflammatory or anti-inflammatory effect depending on M1/M2 polarization phenotype. Cysteinyl leukotriene 2 receptor (CysLT2R) is a potent inflammatory mediator receptor, and involved in cerebral ischemic injury, but the mechanism of CysLT2R regulating inflammation and neuron damage remains unclear. Here, we found that LPS and CysLT2R agonist NMLTC4 significantly increased microglia proliferation and phagocytosis, up-regulated the mRNA expression of M1 polarization markers (IL-1ß, TNF-α, IFN-γ, CD86 and iNOS), down-regulated the expression of M2 polarization markers (Arg-1, CD206, TGF-ß, IL-10, Ym-1) and increased the release of IL-1ß and TNF-α. CysLT2R selective antagonist HAMI3379 could antagonize these effects. IL-4 significantly up-regulated the mRNA expression of M2 polarization markers, and HAMI3379 further increased IL-4-induced up-regulation of M2 polarization markers expression. Additionally, LPS and NMLTC4 stimulated NF-κB p50 and p65 proteins expression, and promoted p50 transfer to the nucleus. Pre-treatment with HAMI3379 and NF-κB signaling inhibitor Bay 11-7082 could reverse the up-regulation of p50 and p65 proteins expression, and inhibited p50 transfer to the nucleus. The conditional medium of BV-2 cells contained HAMI3379 could inhibit SH-SY5Y cells apoptosis induced by LPS and NMLTC4. These results were further confirmed in primary microglia. The findings indicate that CysLT2R was involved in inflammation and neuronal damage by inducing the activation of microglia M1 polarization and NF-κB pathway, inhibiting microglia M1 polarization and promoting microglia polarization toward M2 phenotype which may exerts neuroprotective effects, and targeting CysLT2R may be a new therapeutic strategy against cerebral ischemia stroke.


Assuntos
Polaridade Celular/fisiologia , Inflamação/fisiopatologia , Microglia/fisiologia , NF-kappa B/fisiologia , Neurônios/patologia , Receptores de Leucotrienos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Cicloexanocarboxílicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Leucotrieno C4/análogos & derivados , Leucotrieno C4/antagonistas & inibidores , Leucotrieno C4/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Fagocitose/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Cultura Primária de Células , Ratos , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonas/farmacologia , Fator de Transcrição RelA/biossíntese , Regulação para Cima/efeitos dos fármacos
7.
Int J Mol Med ; 42(5): 2750-2762, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226562

RESUMO

GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen­glucose deprivation/recovery (OGD/R)­induced ischemia­like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron­glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R­induced responses in neuron­glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5'­diphosphate (UDP) in neuron­glial mixed cultures. However, GPR17 knockdown did not affect OGD/R­induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R­induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia­like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.


Assuntos
Citocinas/imunologia , Microglia/patologia , Neurônios/patologia , Receptores Acoplados a Proteínas G/imunologia , Traumatismo por Reperfusão/patologia , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Morte Celular , Células Cultivadas , Microglia/imunologia , Microglia/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Fagocitose , Interferência de RNA , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Regulação para Cima
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 47(1): 10-18, 2018 01 25.
Artigo em Chinês | MEDLINE | ID: mdl-30146806

RESUMO

OBJECTIVE: : To determine the effects of cysteinyl leukotriene receptors (CysLT1R and CysLT2R) on phagocytosis of mouse BV2 microglial cells. METHODS: : BV2 cells were stimulated with microglial activators lipopolysaccharide (LPS) or CysLT receptor agonists LTD4. The phagocytosis of BV2 cells was observed by immunofluorescence analysis and flow cytometry. The intracellular distributions of CysLT1R and CysLT2R in BV2 cells were examined with immunofluorescence staining. RESULTS: : Both LPS and LTD4 could significantly enhance the phagocytosis of BV2 cells, and such effect could be inhibited by CysLT1R selective antagonist Montelukast and CysLT2R selective antagonist HAMI 3379. The activation of BV2 cells induced by LTD4 or LPS resulted in changes in intracellular distributions of CysLT1R and CysLT2R. CysLT1R and CysLT2R was co-localization with a similar distribution. CONCLUSIONS: : CysLT1R and CysLT2R regulate the phagocytosis of mouse BV2 microglial cells with a synergistic effect.


Assuntos
Acetatos/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Lipopolissacarídeos/farmacologia , Microglia , Fagocitose/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Quinolinas/farmacologia , Receptores de Leucotrienos/agonistas , Animais , Linhagem Celular , Ciclopropanos , Camundongos , Microglia/citologia , Ligação Proteica/efeitos dos fármacos , Receptores de Leucotrienos/metabolismo , Sulfetos
9.
Neuroscience ; 356: 193-206, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28528966

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is an important neuroprotective factor in cerebral ischemia, and it has been reported that NAMPT inhibitors can aggravate neuronal injury in the acute phase. However, because it is a cytokine, NAMPT participates in many inflammatory diseases in the peripheral system, and its inhibitors have therapeutic effects. Following cerebral ischemia, the peripheral and resident inflammatory and immune cells produce many pro-inflammatory mediators in the ischemic area, which induce neuroinflammation and impair the brain. However, the effects of NAMPT inhibitors in the neuroinflammation after ischemic brain injury remain unknown. Here, we found that FK866, a potent NAMPT inhibitor, decreased the level of TNF-α, NAMPT and IL-6 in the ischemic brain tissue one day after middle-cerebral-artery occlusion and reperfusion (MCAO/R), improved neurological dysfunction, decreased infarct volume and neuronal loss, and inhibited microgliosis and astrogliosis 14days after MCAO/R. The expression of NAMPT protein was induced in Iba1-positive microglia/macrophages in the ischemia core 14days after MCAO/R. In vitro studies show that oxygen-glucose deprivation and recovery (OGD/R) activate microglia. Activated microglia increased the activity of NF-κB, increased the mRNA synthesis of TNF-α, NAMPT and IL-6, and increased the secretion of TNF-α, NAMPT and IL-6. On the other hand, NAMPT can act synergistically with other cytokines and activate microglia. FK866 strongly inhibited these changes and alleviated OGD/R-induced activation of microglia. As such, NAMPT is a crucial determinant of cellular inflammation after cerebral ischemia. NAMPT inhibitors are novel compounds to protect neuronal injury from ischemia via anti-inflammatory effects.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nicotinamida Fosforribosiltransferase/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci Rep ; 6: 20568, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857153

RESUMO

Specific cell surface labeling is essential for visualizing the internalization processes of G-protein coupled receptors (GPCRs) and for gaining mechanistic insight of GPCR functions. Here we present a rapid, specific, and versatile labeling scheme for GPCRs at living-cell membrane with the use of a split green fluorescent protein (GFP). Demonstrated with two GPCRs, GPR17 and CysLT2R, we show that two ß-stands (ß-stands 10 and 11) derived from a superfolder GFP (sfGFP) can be engineered to one of the three extracellular loop of a GPCR. The complementary fragment of sfGFP has nine ß-strands (ß-stands 1-9) that carries the mature fluorophore, and can be proteolytically derived from the full-length sfGFP. Separately the GFP fragments are non-fluorescent, but become fluorescent upon assembly, thus allowing specific labeling of the target proteins. The two GFP fragments rapidly assemble and the resulting complex is extremely tight under non-denaturing conditions, which allows real-time and quantitative assessment of the internalized GPCRs. We envision that this labeling scheme will be of great use for labeling other membrane proteins in various biological and pharmacological applications.


Assuntos
Proteínas de Fluorescência Verde , Engenharia de Proteínas/métodos , Receptores Acoplados a Proteínas G , Proteínas Recombinantes de Fusão , Coloração e Rotulagem/métodos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Stem Cell Reports ; 5(5): 805-815, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26607952

RESUMO

The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming.


Assuntos
Reprogramação Celular , Elementos Facilitadores Genéticos , Células-Tronco Neurais/citologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Corpo Estriado/citologia , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Células-Tronco Neurais/metabolismo , Neurogênese , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 257-64, 2014 05.
Artigo em Chinês | MEDLINE | ID: mdl-24998647

RESUMO

OBJECTIVE: To investigate the antioxidative effects of two cysteinyl leukotriene receptors antagonists (CysLT1R and CysLT2R) montelukast and HAMI 3379 on ischemic injury of rat cortical neurons in vitro. METHODS: Cultured rat cortical neurons were pretreated with CysLT1R antagonist montelukast and CysLT2R antagonist HAMI 3379, and then exposed to oxygen-glucose deprivation/recovery (OGD/R)or H2O2. Reactive oxygen species (ROS) mitochondrial membrane potential (MMP) depolarization, neuronal viability and lactate dehydrogenase (LDH) release were determined. Meanwhile, RNA interference was used to inhibit the expression of CysLT1R and CysLT2R,and the effects were observed. RESULTS: ROS production in neurons was significantly increased after 1 h OGD, which reached the peak at 30 min and lasted for 1.5 h after recovery. Montelukast and HAMI 3379 at 0.01-1µmol/L moderately decreased OGD/R-induced ROS production (P<0.05). Montelukast mildly attenuated OGD/R-induced MMP depolarization (P<0.05),but HAMI 3379 had no effect. H2O2 reduced neuronal viability and increased LDH release, namely inducing neuronal injury. Montelukast and HAMI 3379 at 0.1-1µmol/L moderately attenuated H2O2-induced neuronal injury (P<0.05). However, both CysLT1R siRNA and CysLT2R shRNA did not significantly affect the responses mentioned above. CONCLUSION: In ischemic neuronal injury, montelukast and HAMI 3379 exert a moderate antioxidative effect, and this effect may be receptor-independent.


Assuntos
Acetatos/farmacologia , Antioxidantes/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Neurônios/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Quinolinas/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Ciclopropanos , Antagonistas de Leucotrienos/farmacologia , Neurônios/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfetos
13.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 265-72, 2014 05.
Artigo em Chinês | MEDLINE | ID: mdl-24998648

RESUMO

OBJECTIVE: To investigate the protective effect of histone deacetylase inhibitor NL101 on L-homocysteine (HCA)-induced toxicity in rat neurons, and the toxic effect on normal rat neurons. METHODS: In the presence of NL101 at various concentrations, HCA (5 mmol/L)-induced changes in cell density, necrosis, and viability were determined in the mixed cultures of rat cortical cells and the primary cultures of rat neurons. The direct effect of NL101 on primary neurons was also observed in the absence of HCA. Histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) was used as the control. After the treatments, cell viability, the density, and morphology of neurons and glial cells, and cell necrosis were determined. RESULTS: In the mixed cultures of cortical cells, NL101 had no effect on HCA (5 mmol/L)-induced cell number reduction at 0.001-10µmol/L; however, it significantly attenuated necrosis at 1-10 µmol/L, and increased neuronal number at 1 µmol/L. NL101 had no effect on the mixed cortical cells in the absence of HCA. In the primary neurons, NL101 reduced neuronal viability and mildly increased necrosis at 1-10 µmol/L in the absence of HCA, while it significantly attenuated HCA-induced neuronal viability reduction at 0.01-10 µmol/L and reduced neuronal necrosis at 1-10 µmol/L. The effects of NL101 were apparently similar to those of SAHA. CONCLUSION: NL101 has protective effect on HCA-induced neuronal injury but it is neurotoxic at high concentrations, which is similar to the typical histone deacetylase inhibitor SAHA.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Neurônios/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ratos
14.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 281-6, 2014 05.
Artigo em Chinês | MEDLINE | ID: mdl-24998650

RESUMO

OBJECTIVE: To evaluate the effect of water channel aquaporin 4 (AQP4) on bleomycin-induced lung fibrosis in mice. METHODS: In wild type and AQP4 gene knockout (AQP4-/-) mice, lung fibrosis was induced by injection of bleomycin (3 mg/kg) into the trachea and saline injection was used as a control. At d3, 7, 14, 28 after bleomycin-treatment, mice were randomly sacrificed in batch and the lung coefficient was determined. Serum levels of TGF-ß1 and TNF-α were measured by ELISA and hydroxyproline contents in lung tissue were determined by Alkaline hydrolysis method. H-E staining and Masson's staining were performed to examine the pathological changes of lung tissues after bleomycin-treatment. RESULTS: On d14 after bleomycin-treatment, the lung coefficients in wild type mice and AQP4-/- mice were 1.9-fold (12.69 ± 6.05 vs 6.80 ± 0.82, q=4.204, P<0.05) and 2.3-fold (14.05 ± 5.82 vs 6.05± 0.58, q=5.172, P<0.01) of that in control, respectively, but no significant difference was found between wild type and AQP4-/- mice in the lung coefficient value (P>0.05). The hydroxyproline contents in the lung increased after bleomycin-treatment; on d28, the lung hydroxyproline contents in wild type and in AQP4-/- mice were 1.55-fold (0.85 ± 0.22 g/mg vs 0.55 ± 0.14 µg/mg, q=4.313, P<0.05) and 1.4-fold (0.84 ± 0.13 µg/mg vs 0.60 ± 0.14µg/mg, q=4.595,P<0.05) of that in control, respectively, but no significant difference was noticed between wild type and AQP4-/- mice in lung hydroxyproline contents. There was a tendency that serum TGF-ß1 and TNF-α levels increased in bleomycin-treated mice, but no significant difference was found between wild type and AQP4-/- mice. AQP4-knockout showed no effects on pathological changes of lung tissues with H-E staining and Masson's staining in mice with bleomycin-induced lung fibrosis. CONCLUSION: AQP4 might not be involved in bleomycin-induced lung fibrosis in mice.


Assuntos
Aquaporina 4/genética , Bleomicina/toxicidade , Fibrose Pulmonar/induzido quimicamente , Animais , Masculino , Camundongos , Camundongos Knockout , Fibrose Pulmonar/genética
15.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 43(3): 287-92, 2014 05.
Artigo em Chinês | MEDLINE | ID: mdl-24998651

RESUMO

OBJECTIVE: To investigate the effects of cysteinyl leukotriene (CysLT) receptor agonist leukotriene D4 (LTD4) on proliferation and migration in lung epithelial A549 cells. METHODS: The expression of CysLT1 receptor and CysLT2 receptor was determined by immunofluoresence staining in A549 cells. A549 cells were treated with LTD4 (0.01-100 nmol/L) for 24-72 h. Cell viability was detected by MTT reduction assay. Cell migration was determined by modified scratch and healing model. RESULTS: In A549 cells, CysLT1 receptor and CysLT2 receptor were mainly expressed in the cytoplasm, membrane and few in the nuclei. The treatment of LTD4 (0.01-100 nmol/L) for 24-72 h caused no effect on cell viability (Ps>0.05); when A549 cells were treated with 100 nmol/L LTD4 for 24, 48 and 72 h the cell viability was (103.00±4.46)%,(107.00±9.45)% and (105.00±9.02)% of control, respectively (Ps>0.05). The migration rate of A549 cells after scratching during the first 24 h was markedly greater than that during the second and third 24 h in the same concentration groups; however, no significant difference in migration rate was noticed when the cells were treated with different concentrations of LTD4 (0.01-100 nmol/L)(Ps>0.05). The migration of A549 cells was 1.15-fold, 1.21-fold and 1.06-fold of that of control when the cells were treated with 100 nmol/L LTD4 for 24, 48 and 72 h, respectively (Ps>0.05). CONCLUSION: The proliferation and migration of A549 cells are not changed when treated with 0.01-100 nmol LTD4 for up to 72h.


Assuntos
Células Epiteliais/citologia , Leucotrieno D4/farmacologia , Alvéolos Pulmonares/citologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos
16.
Eur J Cell Biol ; 93(7): 278-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24925646

RESUMO

The CysLT2 receptor is involved in myocardial ischemia/reperfusion injury, differentiation of colorectal cancers, bleomycin-induced pulmonary inflammation and fibrosis. However, the signal transduction of cysteinyl leukotriene receptor 2 (CysLT2) in inflammatory responses remains to be clarified. In HEK293 cells stably expressing hCysLT1, hCysLT2 and rGPR17, we determined the signaling pathways for interleukin-8 (IL-8) production after CysLT2 receptor activation. HEK293 cells were stably transfected with the recombinant plasmids of pcDNA3.1(+)-hCysLT1, pcDNA3.1(+)-hCysLT2 and pcDNA3.1-rGPR17. Leukotriene C4 (LTC4) and LTD4 were used as the agonists to induce IL-8 production and the related changes in signal molecules. We found that LTC4 and LTD4 significantly induced IL-8 promoter activation in the HEK293 cells stably expressing hCysLT2, but not in those expressing hCysLT1 and rGPR17. In hCysLT2-HEK293 cells, LTC4 induced elevation of intracellular calcium, ERK1/2 phosphorylation and Egr-1 expression, and stimulated IL-8 expression and release. These responses were blocked by the selective CysLT2 receptor antagonist HAMI3379. The ERK1/2 inhibitor U0126 inhibited Egr-1 and IL-8 expression as well as IL-8 release, but the JNK and p38 inhibitors did not have the inhibitory effects. Down-regulation of Egr-1 by RNA interference with its siRNA inhibited the LTC4-induced IL-8 expression and release. In conclusion, these findings indicate the ERK-Egr-1 pathway of CysLT2 receptors mediates IL-8 production induced by the pro-inflammatory mediators LTC4 and LTD4.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Interleucina-8/biossíntese , Receptores de Leucotrienos/metabolismo , Butadienos/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Interleucina-8/metabolismo , Leucotrieno C4/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Ácidos Ftálicos/farmacologia , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo
17.
Acta Pharmacol Sin ; 35(1): 33-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141567

RESUMO

AIM: To investigate the roles of cysteinyl leukotriene receptors CysLT1R and CysLT2R in leukotriene D4 (LTD4)-induced activation of microglial cells in vitro. METHODS: Mouse microglial cell line BV2 was transfected with pcDNA3.1(+)-hCysLT1R or pcDNA3.1(+)-hCysLT2R. The expression of relevant mRNAs and proteins in the cells was detected using RT-PCR and Western blotting, respectively. Phagocytosis was determined with flow cytometry analysis. The release of interleukin-1ß (IL-1ß) from the cells was measured using an ELISA assay. RESULTS: The expression of CysLT1R or CysLT2R was considerably increased in the transfected BV2 cells, and the receptors were mainly distributed in the plasma membrane and cytosol. Treatment of the cells expressing CysLT1R or CysLT2R with CysLT receptor agonist LTD4 (0.1-100 nmol/L) concentration-dependently enhanced the phagocytosis, and increased mRNA expression and release of IL-1ß. Moreover, the responses of hCysLT1R-BV2 cells to LTD4 were significantly larger than those of hCysLT2R-BV2 or WT-BV2 cells. Pretreatment of hCysLT1R-BV2 cells with the selective CysLT1R antagonist montelukast (1 µmol/L) significantly blocked LTD4-induced phagocytosis as well as the mRNA expression and release of IL-1ß, whereas the selective CysLT2R antagonist HAMI 3379 (1 µmol/L) had no such effects. CONCLUSION: CysLT1R mediates LTD4-induced activation of BV2 cells, suggesting that CysLT1R antagonists may exert anti-inflammatory activity in brain diseases.


Assuntos
Leucotrieno D4/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Receptores de Leucotrienos/agonistas , Receptores de Leucotrienos/fisiologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Camundongos
18.
Nat Cell Biol ; 15(10): 1164-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24056302

RESUMO

Adult differentiated cells can be reprogrammed into pluripotent stem cells or lineage-restricted proliferating precursors in culture; however, this has not been demonstrated in vivo. Here, we show that the single transcription factor SOX2 is sufficient to reprogram resident astrocytes into proliferative neuroblasts in the adult mouse brain. These induced adult neuroblasts (iANBs) persist for months and can be generated even in aged brains. When supplied with BDNF and noggin or when the mice are treated with a histone deacetylase inhibitor, iANBs develop into electrophysiologically mature neurons, which functionally integrate into the local neural network. Our results demonstrate that adult astrocytes exhibit remarkable plasticity in vivo, a feature that might have important implications in regeneration of the central nervous system using endogenous patient-specific glial cells.


Assuntos
Astrócitos/citologia , Reprogramação Celular/genética , Células-Tronco Neurais/citologia , Animais , Proliferação de Células , Proteína Glial Fibrilar Ácida/genética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
19.
J Pharmacol Exp Ther ; 346(2): 328-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23750020

RESUMO

The cysteinyl leukotrienes (CysLTs) are inflammatory mediators closely associated with neuronal injury after brain ischemia through the activation of their receptors, CysLT1R and CysLT2R. Here we investigated the involvement of both receptors in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemic neuronal injury and the effect of the novel CysLT2R antagonist HAMI 3379 [3-({[(1S,3S)-3- carboxycyclohexyl]amino}carbonyl)-4-(3-{4-[4-(cyclo-hexyloxy)butoxy]phenyl}propoxy)benzoic acid] in comparison with the CysLT1R antagonist montelukast. In primary neurons, neither the nonselective agonist leukotriene D4 (LTD4) nor the CysLT2R agonist N-methyl-leukotriene C4 (NMLTC4) induced neuronal injury, and HAMI 3379 did not affect OGD/R-induced neuronal injury. However, in addition to OGD/R, LTD4 and NMLTC4 induced cell injury and neuronal loss in mixed cultures of cortical cells, and neuronal loss and necrosis in neuron-microglial cocultures. Moreover, they induced phagocytosis and cytokine release (interleukin-1ß and tumor necrosis factor-α) from primary microglia, and conditioned medium from the treated microglia induced neuronal necrosis. HAMI 3379 inhibited all of these responses, and its effects were the same as those of CysLT2R interference by CysLT2R short hairpin RNA, indicating CysLT2R dependence. In comparison, montelukast moderately inhibited OGD/R-induced primary neuronal injury and most OGD/R- and LTD4-induced (but not NMLTC4-induced) responses in mixed cultures, cocultures, and microglia. The effects of montelukast were both dependent and independent of CysLT1Rs because interference by CysLT1R small interfering RNA had limited effects on neuronal injury in neuron-microglial cocultures and on cytokine release from microglia. Our findings indicated that HAMI 3379 effectively blocked CysLT2R-mediated microglial activation, thereby indirectly attenuating ischemic neuronal injury. Therefore, CysLT2R antagonists may represent a new type of therapeutic agent in the treatment of ischemic stroke.


Assuntos
Ácidos Cicloexanocarboxílicos/farmacologia , Antagonistas de Leucotrienos/farmacologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Receptores de Leucotrienos/metabolismo , Acetatos/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hipóxia Celular , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Ciclopropanos , Citocinas/metabolismo , Feminino , Glucose/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia , Necrose , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Fagocitose , Cultura Primária de Células , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Leucotrienos/agonistas , Sulfetos
20.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 42(3): 253-60, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23801612

RESUMO

OBJECTIVE: To investigate the effects of CysLT receptor agonist leukotriene D4(LTD4) and antagonists on activation of microglia BV2 cells. METHODS: The expression of CysLT1 and CysLT2 protein was determined by Western blotting and immunostaining in microglia BV2 cells. BV2 cells were pretreated with or without CysLT1 receptor selective antagonist montelukast, CysLT2 receptor selective antagonist HAMI 3379, or CysLT1/CysLT2 receptor dual antagonist BAY u9773 for 30 min, then the cells were treated with LTD4 for 24 h. Cell viability was detected by MTT reduction assay. Phagocytosis and mRNA expression of IL-6 were determined by fluorescent bead tracking and RT-PCR, respectively. RESULTS: In BV2 cells, LTD4 did not affect proliferation but significantly enhanced phagocytosis and increased IL-6 mRNA expression in a concentration-dependent manner. LTD4 at 100 nmol/L induced a 1.4-fold increase of phagocytic index and a 2-fold up-regulation of IL-6 mRNA expression (P<0.01). HAMI 3379 and BAY u9773 (100 nmol/L) further increased LTD4-induced phagocytosis; BAY u9773 and montelukast decreased LTD4-induced IL-6 mRNA expression, while HAMI 3379 had no effect on that. CONCLUSION: LTD4 activates BV2 cells in vitro and enhances IL-6 mRNA expression mediated by CysLT1 receptor, LTD4 induces phagocytosis which might be negatively regulated by CysLT2 receptor in BV2 cells.


Assuntos
Leucotrieno D4/farmacologia , Microglia/citologia , Receptores de Leucotrienos/metabolismo , Acetatos/farmacologia , Linhagem Celular , Proliferação de Células , Ácidos Cicloexanocarboxílicos/farmacologia , Ciclopropanos , Humanos , Interleucina-6/metabolismo , Antagonistas de Leucotrienos/farmacologia , Microglia/metabolismo , Fagocitose , Ácidos Ftálicos/farmacologia , Quinolinas/farmacologia , SRS-A/análogos & derivados , SRS-A/farmacologia , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...